Surface heat transfer coefficients and heat flux when U=0 W/m2K
Posted: Wed Apr 29, 2015 7:00 am -1100
Hello,
We have a little doubt.
We are trying to simulate the drying process of a material with WUFI-2D. In allways simulation that we had performed until now we considered a surface heat transfer coefficients of 8 or 17-25 W/m2K for indoor or outdoor surfaces respectively.
However, we want to simulate the drying process of a test specimen with an initial conditions of 20ºC and 100% RH in a room with a constant climate of 20 °C and 60% RH over time. Due to the temperature is constant we consider a heat transfer coefficient of 0 in all surfaces but, in this way, the moisture content of the test specimen does not change over time (free water saturation). Thus, it is always necessary to enter a value different from 0 for the surface heat transfer coefficients? In our case, we considered that there is no heat flux because the temperature was constant and we considered U=0 W/m2K but why there is no transfer of moisture? Nevertheless, when we consider a surface heat transfer coefficient of 1,4,8,17 or 25 W/m2K the test speciment dried and the behavior was similar.
It seems that when U=0 W/m2K the surface performed like a adiabatic border without heat and moisture transfer, why?
Thanks,
We have a little doubt.
We are trying to simulate the drying process of a material with WUFI-2D. In allways simulation that we had performed until now we considered a surface heat transfer coefficients of 8 or 17-25 W/m2K for indoor or outdoor surfaces respectively.
However, we want to simulate the drying process of a test specimen with an initial conditions of 20ºC and 100% RH in a room with a constant climate of 20 °C and 60% RH over time. Due to the temperature is constant we consider a heat transfer coefficient of 0 in all surfaces but, in this way, the moisture content of the test specimen does not change over time (free water saturation). Thus, it is always necessary to enter a value different from 0 for the surface heat transfer coefficients? In our case, we considered that there is no heat flux because the temperature was constant and we considered U=0 W/m2K but why there is no transfer of moisture? Nevertheless, when we consider a surface heat transfer coefficient of 1,4,8,17 or 25 W/m2K the test speciment dried and the behavior was similar.
It seems that when U=0 W/m2K the surface performed like a adiabatic border without heat and moisture transfer, why?
Thanks,