Wärme- und Feuchtetransport in VIPs
Posted: Tue Jul 23, 2019 2:35 am -1100
Liebes WUFI Team,
ich bin gerade dabei, eine WUFI Pro Simulation für ein VIP mit pyrogener Kieselsäure zu erstellen. Mir geht es dabei darum, die Feuchteverteilung und Wärmeströme über den Querschnitt bei unterschiedlichen Feuchtegehalten bei konstantem Temperaturgradienten (2-18°C) zu untersuchen. Daher habe ich das VIP, welches insgesamt eine Dicke von 2 cm hat, in 5 Layer (je 4 mm) aufgeteilt. Ich habe sowohl Diffusion als auch Kapillartransport aktiviert. An der Innen und Außenseite des VIPs wurde der sd Wert sehr hoch gesetzt, um die wasserdampfundurchlässige Folie vereinfacht abzubilden. Das Saugverhalten und die Weiterverteilung habe ich generieren lassen. Bei einer Untersuchung für die freie Wassersättigung zeigte sich, dass diese der maximalen Wasseraufnahme entspricht, weshalb ich wf als wmax angenommen habe. Vereinfacht wird zunächst angenommen, dass die Wasserdampfdiffusionswiderstandszahl nicht feuchteabhängig ist und die Wärmeleitfähigkeit nicht temperaturabhängig. Außerdem wird keine temperaturabhängige Enthalpie eingegeben.
Die Simulation habe ich für Feuchtegehalte von 1-15 m% durchgeführt. Ich wollte nun mein Lambda für jede der 5 Schichten ausrechnen und dabei ergibt sich der Verlauf im Anhang (Screenshots-Abbildung1). Mir sind in L2 und L3 (Position Layer siehe Screenshots-Abbildung 2) die Knicke an den Feuchtegehalten von 7 M% und 12 M% nicht richtig erklärbar. Die Screenshots der Filmdarstellungen bei 7 und 8 M% Feuchte sind in der Datei im Anhang (Abbildung 3 und 4) zu entnehmen. Meiner Meinung nach sind die Verläufe der Relativen Feuchte und des Feuchtegehalts sehr ähnlich. Auf diesen ist zu erkennen, dass sich über das gesamte Bauteil kein konstanter Wärmestrom einstellt (auch nicht nach 10 Jahren Simulationszeit). Ich habe für die Berechnung von Lambda der Schicht L1 den Wärmestrom der Außenschicht (linke Seite - Kaltseite) angenommen für L2 den der Grenze zwischen Schicht 1 und 2, usw. Liegt darin schon der Fehler? Wäre es richtig, statt den Wärmestrom an den Grenzschichten mit dem Wärmestrom durch die Außen- bzw. Innenschicht zu rechnen, um die Wärmeleitfähigkeit für die einzelnen Schichten zu bekommen?
Dennoch stellt sich die Frage, wieso der Wärmestrom über den gesamten Bauteilquerschnitt nicht konstant ist. Die Ergebnisse der ASCI Datei zeigen, dass die Wärmeströme an den einzelnen Schichten zwar nach einer bestimmten Zeit einen konstanten Wert annehmen, dieser aber nicht gleich ist über den gesamten Querschnitt (wie man auch an den Screenshots erkennt - rot eingekreist). Die Filmdarstellung zeigt schon nach kurzer Zeit einen konstanten Temperatur-, RF und Wassergehaltverlauf. Könnte es ein numerisches Problem sein oder ist es auf den Kapillartransport bzw. Kondensations- und Verdampfungsprozesse zurückzuführen?
Ich habe mit dem numerischen Gitter bereits etwas herumgespielt und z.T. hat es Einfluss auf den Verlauf der Lambda Werte.
Als letztes habe ich noch einen Screenshot der Filmdarstellung bei 8M% ohne Kapillartransport angefügt (Abbildung 5). Hier ist der Wärmestrom über alle Schichten konstant. Auch der Feuchtestrom ist konstant, allerdings frage ich mich allgemein noch, wieso ich noch einen Feuchtestrom habe. Dieser sollte doch eigentlich zum Erliegen kommen in einem geschlossenen System nach ausreichend langer Wartezeit oder? Außerdem sieht man auch über die Außenschicht einen Feuchtetransport, obwohl mein sd Wert sehr hoch ist und keine Feuchte nach außen oder ins Innere des VIPs eintreten sollte.
Vielen Dank vorab!
ich bin gerade dabei, eine WUFI Pro Simulation für ein VIP mit pyrogener Kieselsäure zu erstellen. Mir geht es dabei darum, die Feuchteverteilung und Wärmeströme über den Querschnitt bei unterschiedlichen Feuchtegehalten bei konstantem Temperaturgradienten (2-18°C) zu untersuchen. Daher habe ich das VIP, welches insgesamt eine Dicke von 2 cm hat, in 5 Layer (je 4 mm) aufgeteilt. Ich habe sowohl Diffusion als auch Kapillartransport aktiviert. An der Innen und Außenseite des VIPs wurde der sd Wert sehr hoch gesetzt, um die wasserdampfundurchlässige Folie vereinfacht abzubilden. Das Saugverhalten und die Weiterverteilung habe ich generieren lassen. Bei einer Untersuchung für die freie Wassersättigung zeigte sich, dass diese der maximalen Wasseraufnahme entspricht, weshalb ich wf als wmax angenommen habe. Vereinfacht wird zunächst angenommen, dass die Wasserdampfdiffusionswiderstandszahl nicht feuchteabhängig ist und die Wärmeleitfähigkeit nicht temperaturabhängig. Außerdem wird keine temperaturabhängige Enthalpie eingegeben.
Die Simulation habe ich für Feuchtegehalte von 1-15 m% durchgeführt. Ich wollte nun mein Lambda für jede der 5 Schichten ausrechnen und dabei ergibt sich der Verlauf im Anhang (Screenshots-Abbildung1). Mir sind in L2 und L3 (Position Layer siehe Screenshots-Abbildung 2) die Knicke an den Feuchtegehalten von 7 M% und 12 M% nicht richtig erklärbar. Die Screenshots der Filmdarstellungen bei 7 und 8 M% Feuchte sind in der Datei im Anhang (Abbildung 3 und 4) zu entnehmen. Meiner Meinung nach sind die Verläufe der Relativen Feuchte und des Feuchtegehalts sehr ähnlich. Auf diesen ist zu erkennen, dass sich über das gesamte Bauteil kein konstanter Wärmestrom einstellt (auch nicht nach 10 Jahren Simulationszeit). Ich habe für die Berechnung von Lambda der Schicht L1 den Wärmestrom der Außenschicht (linke Seite - Kaltseite) angenommen für L2 den der Grenze zwischen Schicht 1 und 2, usw. Liegt darin schon der Fehler? Wäre es richtig, statt den Wärmestrom an den Grenzschichten mit dem Wärmestrom durch die Außen- bzw. Innenschicht zu rechnen, um die Wärmeleitfähigkeit für die einzelnen Schichten zu bekommen?
Dennoch stellt sich die Frage, wieso der Wärmestrom über den gesamten Bauteilquerschnitt nicht konstant ist. Die Ergebnisse der ASCI Datei zeigen, dass die Wärmeströme an den einzelnen Schichten zwar nach einer bestimmten Zeit einen konstanten Wert annehmen, dieser aber nicht gleich ist über den gesamten Querschnitt (wie man auch an den Screenshots erkennt - rot eingekreist). Die Filmdarstellung zeigt schon nach kurzer Zeit einen konstanten Temperatur-, RF und Wassergehaltverlauf. Könnte es ein numerisches Problem sein oder ist es auf den Kapillartransport bzw. Kondensations- und Verdampfungsprozesse zurückzuführen?
Ich habe mit dem numerischen Gitter bereits etwas herumgespielt und z.T. hat es Einfluss auf den Verlauf der Lambda Werte.
Als letztes habe ich noch einen Screenshot der Filmdarstellung bei 8M% ohne Kapillartransport angefügt (Abbildung 5). Hier ist der Wärmestrom über alle Schichten konstant. Auch der Feuchtestrom ist konstant, allerdings frage ich mich allgemein noch, wieso ich noch einen Feuchtestrom habe. Dieser sollte doch eigentlich zum Erliegen kommen in einem geschlossenen System nach ausreichend langer Wartezeit oder? Außerdem sieht man auch über die Außenschicht einen Feuchtetransport, obwohl mein sd Wert sehr hoch ist und keine Feuchte nach außen oder ins Innere des VIPs eintreten sollte.
Vielen Dank vorab!